SciPy, оптимизация с условиями


Open Data Science
Крупнейшее русскоязычное Data Science сообщество

  • Tutorial

SciPy (произносится как сай пай) — это основанный на numpy математический пакет, включающий в себя также библиотеки на C и Fortran. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных, как MATLAB, IDL, Octave, R или SciLab.

В этой статье рассмотрим основные приемы математического программирования — решения задач условной оптимизации для скалярной функции нескольких переменных с помощью пакета scipy.optimize. Алгоритмы безусловной оптимизации уже рассмотрены в прошлой статье. Более подробную и актуальную справку по функциям scipy всегда можно получить с помощью команды help(), Shift+Tab или в официальной документации.

Введение

Общий интерфейс для решения задач как условной, так и безусловной оптимизации в пакете scipy.optimize предоставляется функцией minimize(). Однако известно, что универсального способа для решения всех задач не существует, поэтому выбор адекватного метода как всегда ложится на плечи исследователя.
Подходящий алгоритм оптимизации задается с помощью аргумента функции minimize(..., method="").
Для условной оптимизации функции нескольких переменных доступны реализации следующих методов:

  • trust-constr — поиск локального минимума в доверительной области. Статья на wiki, статья на хабре;
  • SLSQP — последовательное квадратичное программирование с ограничениями, ньютоновский метод решения системы Лагранжа. Статья на вики.
  • TNC — Truncated Newton Constrained, ограниченное число итераций, хорош для нелинейных функций с большим числом независимых переменных. Статья на wiki.
  • L-BFGS-B — метод от четверки Broyden–Fletcher–Goldfarb–Shanno, реализованный с уменьшенным потреблением памяти за счет частичной загрузки векторов из матрицы Гессе. Статья на wiki, статья на хабре.
  • COBYLAКОБЫЛА Constrained Optimization By Linear Approximation, ограниченная оптимизация с линейной аппроксимацией (без вычисления градиента). Статья на wiki.

В зависимости от выбранного метода, по-разному задаются условия и ограничения для решения задачи:

  • объектом класса Bounds для методов L-BFGS-B, TNC, SLSQP, trust-constr;
  • списком (min, max) для этих же методов L-BFGS-B, TNC, SLSQP, trust-constr;
  • объектом или списком объектов LinearConstraint, NonlinearConstraint для методов COBYLA, SLSQP, trust-constr;
  • словарем или списком словарей {'type':str, 'fun':callable, 'jac':callable,opt, 'args':sequence,opt} для методов COBYLA, SLSQP.

План статьи:
1) Рассмотреть применение алгоритма условной оптимизации в доверительной области (method=»trust-constr») с ограничениями, заданными в виде объектов Bounds, LinearConstraint, NonlinearConstraint ;
2) Рассмотреть последовательное программирование методом наименьших квадратов (method=»SLSQP») с ограничениями, заданными в виде словаря {'type', 'fun', 'jac', 'args'};
3) Разобрать пример оптимизации выпускаемой продукции на примере веб-студии.

Условная оптимизация method=»trust-constr»

Реализация метода trust-constr основана на EQSQP для задач с ограничениями вида равенства и на TRIP для задач с ограничениями в виде неравенств. Оба метода реализованы алгоритмами поиска локального минимума в доверительной области и хорошо подходят для крупномасштабных задач.

Математическая постановка задачи поиска минимума в общем виде:

$ min_x f(x) $

$ c^l leq c(x) leq c^u ,$

$x^l leq x leq x^u$

Для ограничений строгого равенства нижняя граница устанавливается равной верхней $c^l_j = c^u_j$.
Для одностороннего ограничения верхняя или нижняя граница устанавливается np.inf с соответствующим знаком.
Пусть необходимо найти минимум известной функцию Розенброка от двух переменных:

$ min_{x_0, x_1} 100(x_0 - x_1^2)^2 + (1-x_0)^2 $

При этом заданы следующие ограничения на ее область определения:

$ x_0^2 + x_1 leq 1 $

$ x_0^2 - x_1 leq 1 $

$ 2x_0 + x_1 = 1 $

$ x_0 + 2x_1 leq 1 $

$ 0 leq x_0 leq 1 $

$ -0.5 leq x_1 leq 2.0 $

В нашем случае имеется единственное решение в точке $[x_0, x_1] = [0.4149, 0.1701]$, для которой справедливы только первое и четвертое ограничения.
Пройдемся по ограничениям снизу вверх и рассмотрим, как можно их записать в scipy.
Ограничения $0 leq x_0 leq 1$ и $-0.5 leq x_1 leq 2.0$ определим с помощью объекта Bounds.

from scipy.optimize import Bounds
bounds = Bounds ([0, -0.5], [1.0, 2.0])

Ограничения $x_0 + 2 x_1 leq 1$ и $2 x_0 + x_1 = 1$ запишем в линейной форме:

$ begin{bmatrix} - infty  1 end{bmatrix} leq begin{bmatrix} 1 & 2  2 & 1 end{bmatrix} begin{bmatrix} x_0  x_1 end{bmatrix} leq begin{bmatrix} 1  1 end{bmatrix}$

Определим эти ограничения в виде объекта LinearConstraint:

import numpy as np
from scipy.optimize import LinearConstraint
linear_constraint = LinearConstraint ([[1, 2], [2, 1]], [-np.inf, 1], [1, 1])

И наконец нелинейное ограничение в матричной форме:

$ c(x) = begin{bmatrix} x_0^2 + x_1  x_0^2 - x_1 end{bmatrix} leq begin{bmatrix} 1  1 end{bmatrix} $

Определим матрицу Якоби для этого ограничения и линейную комбинацию матрицы Гессе с произвольным вектором $v$:

$ J(x) = begin{bmatrix} 2x_0 & 1  2x_0 & -1 end{bmatrix} $

$ H(x, v) = sumlimits_{i=0}^1 v_i nabla^2 c_i(x) = v_0 begin{bmatrix} 2 & 0  2 & 0 end{bmatrix} + v_1 begin{bmatrix} 2 & 0  2 & 0 end{bmatrix} $

Теперь нелинейное ограничение можем определить как объект NonlinearConstraint:

from scipy.optimize import NonlinearConstraint
def cons_f(x):
     return [x[0]**2 + x[1], x[0]**2 - x[1]]
def cons_J(x):
     return [[2*x[0], 1], [2*x[0], -1]]
def cons_H(x, v):
     return v[0]*np.array([[2, 0], [0, 0]]) + v[1]*np.array([[2, 0], [0, 0]])
nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1, jac=cons_J, hess=cons_H)

Если размер велик, матрицы можно задавать и в разреженном виде:

from scipy.sparse import csc_matrix
def cons_H_sparse(x, v):
     return v[0]*csc_matrix([[2, 0], [0, 0]]) + v[1]*csc_matrix([[2, 0], [0, 0]])
nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1,
                                            jac=cons_J, hess=cons_H_sparse)

или как объект LinearOperator:

from scipy.sparse.linalg import LinearOperator
def cons_H_linear_operator(x, v):
    def matvec(p):
        return np.array([p[0]*2*(v[0]+v[1]), 0])
    return LinearOperator((2, 2), matvec=matvec)
nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1,
                                jac=cons_J, hess=cons_H_linear_operator)

Когда вычисление матрицы Гессе $H (x, v)$ требует больших затрат, можно использовать класс HessianUpdateStrategy. Доступны следующие стратегии: BFGS и SR1.

from scipy.optimize import BFGS
nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1, jac=cons_J, hess=BFGS())

Гессиан также может быть вычислен с помощью конечных разностей:

nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1, jac = cons_J, hess = '2-point')

Матрицу Якоби для ограничений также можно вычислить с помощью конечных разностей. Однако, в этом случае матрицу Гессе с помощью конечных разностей уже не вычислить. Гессиан должен быть определен в виде функции или с помощью класса HessianUpdateStrategy.

nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1, jac = '2-point', hess = BFGS ())

Решение оптимизационной задачи выглядит следующим образом:

from scipy.optimize import minimize
from scipy.optimize import rosen, rosen_der, rosen_hess, rosen_hess_prod
x0 = np.array([0.5, 0])
res = minimize(rosen, x0, method='trust-constr', jac=rosen_der, hess=rosen_hess,
                constraints=[linear_constraint, nonlinear_constraint],
                options={'verbose': 1}, bounds=bounds)
print(res.x)

`gtol` termination condition is satisfied.
Number of iterations: 12, function evaluations: 8, CG iterations: 7, optimality: 2.99e-09, constraint violation: 1.11e-16, execution time: 0.033 s.
[0.41494531 0.17010937]

При необходимости, функцию вычисления гессиана можно определить с помощью класса LinearOperator

def rosen_hess_linop(x):
    def matvec(p):
        return rosen_hess_prod(x, p)
    return LinearOperator((2, 2), matvec=matvec)
res = minimize(rosen, x0, method='trust-constr', jac=rosen_der, hess=rosen_hess_linop,
                 constraints=[linear_constraint, nonlinear_constraint],
                 options={'verbose': 1}, bounds=bounds)
print(res.x)

или произведение Гессиана и произвольного вектора через параметр hessp:

res = minimize(rosen, x0, method='trust-constr', jac=rosen_der, hessp=rosen_hess_prod,
                constraints=[linear_constraint, nonlinear_constraint],
                options={'verbose': 1}, bounds=bounds)
print(res.x)

Альтернативно, первая и вторая производные оптимизируемой функции могут быть вычислены приближенно. Например, гессиан может быть аппроксимирован с помощью функции SR1 (квази-Ньютоновского приближения). Градиент может быть аппроксимирован конечными разностями.

from scipy.optimize import SR1
res = minimize(rosen, x0, method='trust-constr',  jac="2-point", hess=SR1(),
               constraints=[linear_constraint, nonlinear_constraint],
               options={'verbose': 1}, bounds=bounds)
print(res.x)

Условная оптимизация method=»SLSQP»

Метод SLSQP предназначен для решения задач минимизации функции в виде:

$ min_x f(x) $

$ c_j(x) = 0, j in mathcal {E} $

$ c_j(x) geq 0, j in mathcal {I} $

$ lb_i leq x_i leq ub_i, i=1,...,N $

Где $mathcal {E}$ и $mathcal {I}$ — множества индексов выражений, описывающих ограничения в виде равенств или неравенств. $[lb_i, ub_i]$ — множества нижних и верхних границ для области определения функции.

Линейные и нелинейные ограничения описываются в виде словарей с ключами type, fun и jac.

ineq_cons = {'type': 'ineq',
             'fun': lambda x: np.array ([1 - x [0] - 2 * x [1],
                                          1 - x [0] ** 2 - x [1],
                                          1 - x [0] ** 2 + x [1]]),
             'jac': lambda x: np.array ([[- 1.0, -2.0],
                                          [-2 * x [0], -1.0],
                                          [-2 * x [0], 1.0]])
            }
eq_cons = {'type': 'eq',
           'fun': lambda x: np.array ([2 * x [0] + x [1] - 1]),
           'jac': lambda x: np.array ([2.0, 1.0])
          }

Поиск минимума осуществляется следующим образом:

x0 = np.array([0.5, 0])
res = minimize(rosen, x0, method='SLSQP', jac=rosen_der,
               constraints=[eq_cons, ineq_cons], options={'ftol': 1e-9, 'disp': True},
               bounds=bounds)
print(res.x)

Optimization terminated successfully.    (Exit mode 0)
            Current function value: 0.34271757499419825
            Iterations: 4
            Function evaluations: 5
            Gradient evaluations: 4
[0.41494475 0.1701105 ]

Пример оптимизации

В связи с переходом к пятому технологическому укладу, рассмотрим оптимизацию производства на примере веб-студии, которая приносит нам небольшой, но стабильный доход. Представим себя директором галеры, на которой производится три вида продукции:

  • x0 — продающие лэндинги, от 10 т.р.
  • x1 — корпоративные сайты, от 20 т.р.
  • x2 — интернет магазины, от 30 т.р.

Наш дружный рабочий коллектив включает в себя четырех джунов, двух мидлов и одного сеньора. Фонд их рабочего времени на месяц:

  • джуны: 4 * 150 = 600 чел * час,
  • мидлы: 2 * 150 = 300 чел * час,
  • сеньор: 150 чел * час.

Пусть на разработку и деплой одного сайта типа (x0, x1, x2) первый попавшийся джуниор должен потратить (10, 20, 30) часов, мидл — (7, 15, 20), сеньор — (5, 10, 15) часов лучшего времени своей жизни.

Как любому нормальному директору, нам хочется максимизировать ежемесячную прибыль. Первый шаг к успеху — записываем целевую функцию value как сумму доходов от произведенной за месяц продукции:

def value(x):
    return - 10*x[0] - 20*x[1] - 30*x[2]

Это не ошибка, при поиске максимума целевая функция минимизируется с обратным знаком.

Следующий шаг — запрещаем перерабатывать своим сотрудникам и вводим ограничения на фонд рабочего времени:

$ begin{bmatrix} 10 & 20 & 30  7 & 15 & 20  5 & 10 & 15 end{bmatrix} begin{bmatrix} x_0  x_1  x_2 end{bmatrix} leq begin{bmatrix} 600  300  150 end{bmatrix} $

Что эквивалентно:

$ begin{bmatrix} 600  300  150 end{bmatrix} - begin{bmatrix} 10 & 20 & 30  7 & 15 & 20  5 & 10 & 15 end{bmatrix} begin{bmatrix} x_0  x_1  x_2 end{bmatrix} geq 0 $

ineq_cons = {'type': 'ineq',
             'fun': lambda x: np.array ([600 - 10 * x [0] - 20 * x [1] - 30 * x[2],
                                         300 - 7  * x [0] - 15 * x [1] - 20 * x[2],
                                         150 - 5  * x [0] - 10 * x [1] - 15 * x[2]])
            }

Формальное ограничение — выпуск продукции должен быть только положительным:

bnds = Bounds ([0, 0, 0], [np.inf, np.inf, np.inf])

И наконец самое радужное допущение — из-за низкой цены и высокого качества к нам постоянно выстраивается очередь из довольных клиентов. Мы можем сами выбирать ежемесячные объемы производства продукции, исходя из решения задачи условной оптимизации с scipy.optimize:

x0 = np.array([10, 10, 10])
res = minimize(value, x0, method='SLSQP', constraints=ineq_cons, bounds=bnds)
print(res.x)

[7.85714286 5.71428571 3.57142857]

Нестрого округлим до целых и посчитаем месячную загрузку гребцов при оптимальном раскладе продукции x = (8, 6, 3) :

  • джуны: 8 * 10 + 6 * 20 + 3 * 30 = 290 чел * час;
  • мидлы: 8 * 7 + 6 * 15 + 3 * 20 = 206 чел * час;
  • сеньор: 8 * 5 + 6 * 10 + 3 * 15 = 145 чел * час.

Вывод: чтобы директор получал свой заслуженный максимум, оптимально делать в месяц по 8 лэндингов, 6 средних сайтов и 3 магазина. Сеньор при этом должен пахать не отрываясь от станка, загрузка мидлов составит примерно 2/3, джунов меньше половины.

Заключение

В статье изложены основные приемы работы с пакетом scipy.optimize, используемые для решения задач условной минимизации. Лично я использую scipy чисто в академических целях, поэтому приведенный пример носит такой шуточный характер.

Много теории и винрарных примеров можно найти, например, в книге И.Л.Акулича «Математическое программирование в примерах и задачах». Более хардкорное применение scipy.optimize для построения 3D структуры по набору изображений (статья на хабре) можно посмотреть в scipy-cookbook.

Основной источник информации — docs.scipy.org, желающие поконтрибьютить в перевод этого и других разделов scipy добро пожаловать на GitHub.

Спасибо mephistopheies за участие в подготовке публикации.

Теги:

Похожие публикации

Source: habr1